Comparison of artificial neural network with logistic regression in prediction of tendency to surgical intervention in nurses
Authors
Abstract:
Introduction: Logistic regression is one of the modeling methods for bipartite dependent variables. On the other hand, artificial neural network is a flexible method with the least limitation. The importance of growing unnecessary beauty surgeries and the importance of prediction and classification made us consider the present study, with the aim of comparing logistic regression and artificial neural network, to predict the tendency for nurses to crack down Method: The sample consisted of 360 nurses working in hospitals affiliated to Kermanshah University of Medical Sciences. The response variable was a tendency or unwillingness to cure. An artificial network evaluation was performed based on the least squares prediction error. Using the rock curve index and prediction accuracy, two models were compared. SPSS22, statistica12 and chi-square test were used to analyze the data Results: In the training group, predictive accuracy, sensitivity, specificity, and surface area under the rock curves for the logistic regression method were 0.777, 0.760, 0.779, 0.779, respectively, and artificial neural network method was 0.847, 0.859, 0.833, 0.846. Also, in the test group, the criteria for logistic regression were 0.813, 0.738, 0.926, 0.832 and 0.735, 0.737, 0.731, 0.735, respectively. Chi-square test did not show any significant difference between the two levels under the rock curve in any of the groups. Conclusion: In the training group, the performance of the ANN was better than the logistic regression method, but in the experimental group, the prediction accuracy and logistic regression characteristics were more than the artificial neural network. Therefore, logistic regression can be used to predict the tendency for surgical intervention in nurses.
similar resources
Artificial neural networks versus bivariate logistic regression in prediction diagnosis of patients with hypertension and diabetes
Background: Diabetes and hypertension are important non-communicable diseases and their prevalence is important for health authorities. The aim of this study was to determine the predictive precision of the bivariate Logistic Regression (LR) and Artificial Neutral Network (ANN) in concurrent diagnosis of diabetes and hypertension. Methods: This cross-sectional study was performed with 12000 ...
full textThe Comparison of Credit Risk between Artificial Neural Network and Logistic Regression Models in Tose-Taavon Bank in Guilan
One of the most important issues always facing banks and financial institutes is the issue of credit risk or the possibility of failure in the fulfillment of obligations by applicants who are receiving credit facilities. The considerable number of banks’ delayed loan payments all around the world shows the importance of this issue and the necessary consideration of this topic. Accordingly...
full textComparison of Gestational Diabetes Prediction Between Logistic Regression, Discriminant Analysis, Decision Tree and Artificial Neural Network Models
Background and Objectives: Gestational Diabetes Mellitus (GDM) is the most common metabolic disorder in pregnancy. In case of early detection, some of its complications can be prevented. The aim of this study was to investigate early prediction of GDM by logistic regression (LR), discriminant analysis (DA), decision tree (DT) and perceptron artificial neural network (ANN) and to compare these m...
full textComparison of artificial neural network and multivariate regression methods in prediction of soil cation exchange capacity (Case study: Ziaran region)
Investigation of soil properties like Cation Exchange Capacity (CEC) plays important roles in study of environmental reaserches as the spatial and temporal variability of this property have been led to development of indirect methods in estimation of this soil characteristic. Pedotransfer functions (PTFs) provide an alternative by estimating soil parameters from more readily available soil data...
full textComparison of Artificial Neural Network and Regression Models for Prediction of Body Weight in Raini Cashmere Goat
The artificial neural networks (ANN) are the learning algorithms and mathematical models, which mimic the information processing ability of human brain and can be used to non linear and complex data. The aim of this study was to compare artificial neural network and regression models for prediction of body weight in Raini Cashmere goat. The data of 1389 goats for body weight, height at withers ...
full textComparison of Artificial Neural Networks and Cox Regression Models in Prediction of Kidney Transplant Survival
Cox regression model serves as a statistical method for analyzing the survival data, which requires some options such as hazard proportionality. In recent decades, artificial neural network model has been increasingly applied to predict survival data. This research was conducted to compare Cox regression and artificial neural network models in prediction of kidney transplant survival. The prese...
full textMy Resources
Journal title
volume 26 issue 5
pages 0- 0
publication date 2019-08
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023